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Learning Objectives 
1. Maximum number of parameters for a multiplicative 

triangle GLM that includes exposure, development, 
and payment periods 

2. Structure of incremental trend model 
3. Interpretation of fitted parameters: cannot measure 

absolute value of trends in single dimension of 
analysis 

4. Extrapolation of future payment period trends: need 
dynamic adjustment to avoid biased bootstrap 
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Outline (1/2) 
A. Basic model structure 

i. Multiplicative model with discrete parameters for each exposure, 
development, and payment period 

ii. Slack factors that reduce the effective dimensions of the space of 
modeled triangles 

iii. Unique parameterization by fixing selected parameter values 

B. Trend model (log-scale) 
i. Incremental trends 
ii. Parameters values depend on reference periods and they are correlated 

across dimensions of analysis 
iii. Co-linear vs. independent dimensions of analysis 
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Outline (2/2) 
C. Offset invariant extrapolation 

i. Intuition: fitted triangle values do not depend on specific 
parameterization; looking for an extrapolation method that has the 
same property 

ii. Dynamically mixing the fitted trends (weights adding to one) does the 
trick; each future payment period trend can be extrapolated on its own; 
can be combined with additional constant adjustment 

iii. Method replicates bootstrapping results for model without payment 
period parameters 

iv. Unlike static extrapolation the method avoids biased bootstrap 
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Data from Taylor & Ashe (1983) 

7/14/2014 C2 - Actuarial Statistics I - Hartl 23 

Incremental Input Values 
Period Dev 1 2 3 4 5 6 7 8 9 10 

Exp                       

1   357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948 

2   352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046 

3   290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405 

4   310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286 

5   443,160 693,190 991,983 769,488 504,851 470,639 

6   396,132 937,085 847,498 805,037 705,960 

7   440,832 847,631 1,131,398 1,063,269 

8   359,480 1,061,648 1,443,370 

9   376,686 986,608 

10   344,014 



Data from Taylor & Ashe (1983) 
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Fitted Incremental Values Maximal model with 27 parameters 
Period Dev 1 2 3 4 5 6 7 8 9 10 

Exp                       

1   357,848 719,008 617,974 666,748 467,856 283,583 316,627 150,625 253,245 67,948 

2   400,050 842,014 896,226 1,195,112 559,160 483,086 308,404 256,003 399,030 

3   325,082 847,343 1,114,697 991,117 660,957 326,505 363,715 279,899 

4   318,924 1,027,430 901,212 1,142,130 435,503 375,392 387,678 

5   383,148 823,017 1,028,973 745,625 496,104 396,443 

6   344,219 1,053,896 753,391 952,607 587,599 

7   464,785 813,661 1,014,946 1,189,738 

8   377,544 1,153,281 1,333,674 

9   355,772 1,007,522 

10   344,014 



Data from Taylor & Ashe (1983) 
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Fitted Incremental Values Last five diagonals, 9 exposure trends, 9 development trends, 1 payment trend 
Period Dev 1 2 3 4 5 6 7 8 9 10 

Exp                       

1             320,206 291,147 192,373 284,193 67,948 

2           576,713 414,724 377,088 249,157 368,082 88,005 

3         1,100,118 567,084 407,799 370,792 244,997 361,936 86,535 

4       943,895 1,001,037 516,010 371,071 337,397 222,932 329,339 78,742 

5     749,730 893,370 947,453 488,389 351,209 319,337 210,999 311,710 74,527 

6   339,982 816,155 972,520 1,031,396 531,659 382,325 347,629 229,693 339,327 81,130 

7   374,741 899,597 1,071,949 1,136,844 586,015 421,413 383,170 253,176 374,019 89,424 

8   457,508 1,098,286 1,308,704 1,387,932 715,445 514,488 467,799 309,094 456,626 109,175 

9   400,900 962,394 1,146,777 1,216,202 626,922 450,830 409,918 270,849 400,127 95,667 

10   344,014 825,835 984,055 1,043,629 537,965 386,860 351,752 232,417 343,351 82,092 



A. Basic model structure 
i. Multiplicative model with discrete parameters for 

each exposure, development, and payment period 
 

𝜇𝑖𝑖 = 𝑎𝑖 ⋅ 𝑏𝑗 ⋅ 𝑐𝑖+𝑗−1, 
 

where 𝑖, 𝑗 = 1, 2, … ,𝑛 with 𝑖 + 𝑗 ≤ 𝑛 + 1, and 
𝑎𝑖 , 𝑏𝑗 , 𝑐𝑖+𝑗−1 > 0. 
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A. Basic model structure 
ii. Slack factors that reduce the effective dimensions of 

the space of modeled triangles 
𝜇𝑖𝑖 = 𝑎𝑖 ⋅ 𝑏𝑗 ⋅ 𝑐𝑖+𝑗−1 = 𝑎𝑖′ ⋅ 𝑏𝑗′ ⋅ 𝑐𝑖+𝑗−1′ , 

𝑎𝑖′ =
𝑥
𝑧𝑖
𝑎𝑖 , 𝑏𝑗′ =

𝑦
𝑧𝑗
𝑏𝑗 , 𝑐𝑘′ =

𝑧𝑘+1

𝑥 ⋅ 𝑦
𝑐𝑘 , 

where 𝑥,𝑦, 𝑧 > 0. 
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A. Basic model structure 
iii. WLOG we may chose reference levels 𝑟, 𝑠, 𝑡 with 

𝑟 + 𝑠 ≠ 𝑡 + 1 such that 𝑎𝑟′ = 𝑏𝑠′ = 𝑐𝑡′ = 1. 
Proof: given general parameterization, use 

𝑧 = 𝑎𝑟 ⋅ 𝑏𝑠 ⋅ 𝑐𝑡 1 𝑟+𝑠−𝑡−1⁄ , 𝑥 =
𝑧𝑟

𝑎𝑟
, 𝑦 =

𝑧𝑠

𝑏𝑠
. 

This implies that a triangle GLM has at most 3𝑛 − 3 
parameters (for 𝑛 × 𝑛 triangle). 
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B. Trend model (log-scale) 
i. Using the log link function and switching to 

incremental trend parameters we get the following  

𝜂𝑖𝑖 = −�𝛼ℓ

𝑟−1

ℓ=𝑖

−�𝛽ℓ

𝑠−1

ℓ=𝑗

− � 𝛾ℓ

𝑡−1

ℓ=𝑖+𝑗−1

+�𝛼ℓ

𝑖−1

ℓ=𝑟

+ �𝛽ℓ

𝑗−1

ℓ=𝑠

+ � 𝛾ℓ

𝑖+𝑗−2

ℓ=𝑡

 

where 𝛼ℓ,𝛽ℓ, 𝛾ℓ are the incremental trend 
parameters, with ℓ = 1, 2, … ,𝑛 − 1. 
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B. Trend model (log-scale) 
ii. Parameter values as a function of reference level 

𝑟 = 4, 𝑠 = 5, 𝑡 = 5 
  
 
ℓ 1 2 3 4 5 6 7 8 9 

𝛼ℓ -4.1 -4.5 -4.5 -4.5 -4.4 -4.3 -4.3 -4.7 -4.6 

𝛽ℓ -3.5 -4.4 -4.4 -5.0 -4.8 -4.5 -4.8 -4.1 -5.9 

𝛾ℓ 4.2 4.3 4.5 4.7 4.3 4.6 4.1 4.6 4.6 
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𝑟 = 4, 𝑠 = 5, 𝑡 = 6 
  
 
ℓ 1 2 3 4 5 6 7 8 9 

𝛼ℓ -6.2 -6.6 -6.6 -6.6 -6.5 -6.5 -6.4 -6.8 -6.7 

𝛽ℓ -5.7 -6.5 -6.5 -7.2 -6.9 -6.7 -7.0 -6.2 -8.0 

𝛾ℓ 6.4 6.4 6.6 6.8 6.4 6.8 6.2 6.8 6.7 

All parameter values are shifted by ±2.139; fitted data values unchanged. 
Data: Taylor and Ashe (1983), ODP model (𝑉 𝜇 = 𝜙𝜙) fitted to full triangle 



B. Trend model (log-scale) 
iii. Co-linear vs. independent dimensions of analysis 

Co-linear 

𝜂𝑖𝑖 = −�𝛼ℓ

𝑟−1

ℓ=𝑖

−�𝛽ℓ

𝑠−1

ℓ=𝑗

− � 𝛾ℓ

𝑡−1

ℓ=𝑖+𝑗−1

+�𝛼ℓ

𝑖−1

ℓ=𝑟

+ �𝛽ℓ

𝑗−1

ℓ=𝑠

+ � 𝛾ℓ

𝑖+𝑗−2

ℓ=𝑡

 

𝑟 + 𝑠 ≠ 𝑡 + 1  
𝑘 = 𝑖 + 𝑗 − 1 (implicit) 
No constant offset 
3 𝑛 − 1  parameters 
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Independent 

𝜂𝑖𝑖𝑘 = 𝜅 −�𝛼ℓ

𝑟−1

ℓ=𝑖

−�𝛽ℓ

𝑠−1

ℓ=𝑗

−�𝛾ℓ

𝑡−1

ℓ=𝑘

+�𝛼ℓ

𝑖−1

ℓ=𝑟

+ �𝛽ℓ

𝑗−1

ℓ=𝑠

+ �𝛾ℓ

𝑘−1

ℓ=𝑡

 

All combinations of r, s, t allowed 
k (independent index) 
Constant offset 𝜅 
1 + 3 𝑛 − 1  parameters 

 



B. Trend model (log-scale) 
iii. Co-linear vs. independent dimensions of analysis 

Co-linear 

𝜂𝑟𝑟 = − � 𝛾ℓ

𝑡−1

ℓ=𝑟+𝑠−1

+ � 𝛾ℓ

𝑟+𝑠−2

ℓ=𝑡

𝜂𝑟 𝑡−𝑟+1 = − � 𝛽ℓ

𝑠−1

ℓ=𝑡−𝑟+1

+ �𝛽ℓ

𝑡−𝑟

ℓ=𝑠

𝜂 𝑡−𝑠+1 𝑠 = − � 𝛼ℓ

𝑟−1

ℓ=𝑡−𝑠+1

+ �𝛼ℓ

𝑡−𝑠

ℓ=𝑟

 

Remember 𝑟 + 𝑠 ≠ 𝑡 + 1 
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Independent 
 

𝜂𝑟𝑟𝑟 = 𝜅 
 

Trend parameters can be interpreted as 
incremental offsets relative to base cell. 
The only parameter that changes when 
different reference levels are chosen is the 
𝜅 parameter. 

 



C. Offset invariant extrapolation 
i. Intuition: 

• Goodness of fit measure of model (i.e. 
likelihood) only depends on fitted values, not 
the specific parameterization 

• Want extrapolation method that is invariant 
under changes in reference levels 
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C. Offset invariant extrapolation 
ii. Dynamic mixing – the mechanics 

𝛾𝑘 = 𝛿𝑘 + �𝜔𝑘𝑘 ⋅ 𝛾ℓ

𝑛−1

ℓ=1

, 

where 𝑘 = 𝑛, … ,2𝑛 − 2, and ∑ 𝜔𝑘𝑘𝑛−1
ℓ=1 = 1. Ensuring that 

𝜂𝑖𝑖 = −�𝛼ℓ

𝑟−1

ℓ=𝑖

−�𝛽ℓ

𝑠−1

ℓ=𝑗

− � 𝛾ℓ

𝑡−1

ℓ=𝑖+𝑗−1

+�𝛼ℓ

𝑖−1

ℓ=𝑟

+ �𝛽ℓ

𝑗−1

ℓ=𝑠

+ � 𝛾ℓ

𝑖+𝑗−2

ℓ=𝑡

 

now also works for 𝑖 + 𝑗 > 𝑛 + 1, thus allowing us to square the triangle. 
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C. Offset invariant extrapolation 
ii. Dynamic mixing – why does it work 

• While we cannot rely on the absolute value of the fitted payment period trends, 
using a mixture with weights summing to one ensures that the extrapolated 
parameters follow any shifts experienced by the fitted parameters. The 
extrapolated values are therefore independent of the reference levels chosen. 

• The method is flexible and allows to express actuarial judgment such as “the next 
two years should see a payment year trend similar to the most recent observed; 
beyond that we expect payment year trends to taper towards the long term 
average.” 

• Based on exogenous information we can also model effects such as “over the next 
five years we expect to see payment period trends that are 1% below the average 
trend observed in the triangle.”  
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C. Offset invariant extrapolation 
iii. Replicating model with no payment period dimension 

• In practice we do not use the maximal model introduced in B.i. Instead we try to 
reduce the number of parameters by grouping together selected trends. This is 
the GLM equivalent of the Barnett and Zehnwirth PTF model. 

• By allowing for distinct trend parameters for each exposure and development 
period, while assuming that all payment period trends are the same, we can 
replicate the results of the constant offset model that ignores the payment period 
dimension of analysis. 

• For example, performing a 50,000 iteration bootstrap of the last five diagonals of 
data from Taylor and Ashe (1983) produces identical results: standard error of the 
reserve outcome of  22.45%, moderate bias (over-projection) of 1.6%, estimated 
reserve of 18.9M. 

 7/14/2014 C2 - Actuarial Statistics I - Hartl 15 



C. Offset invariant extrapolation 
iv. Comparison with static extrapolation 

• While the method presented here depends on exogenous assumptions, it is 
consistent with the general framework for using bootstrapping to derive a 
distribution of reserve outcomes. 

• Using static extrapolation (future payment period parameters are the same for all 
bootstrap iterations) seems to leave out consideration of parameter uncertainty. 
Moreover, a bootstrap with static extrapolation introduces significant bias and 
runs with 50,000 iterations do not produce a robust estimate of the standard 
error of reserve outcomes.  

• For example, 50,000 iteration bootstraps for the same model mentioned on the 
last slide result in significant bias (over-projection) of about 18%, while estimates 
of the standard error are all over the place (e.g 87% or 305%). 
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Learning Objectives 
1. Maximum number of parameters for a multiplicative 

triangle GLM that includes exposure, development, 
and payment periods 

2. Structure of incremental trend model 
3. Interpretation of fitted parameters: cannot measure 

absolute value of trends in single dimension of 
analysis 

4. Extrapolation of future payment period trends: need 
dynamic adjustment to avoid biased bootstrap 
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B. Trend model (log-scale) 
iii. Co-linear vs. independent dimensions of analysis 

Co-linear 

𝜂𝑖𝑖 = −�𝛼ℓ

𝑟−1

ℓ=𝑖

−�𝛽ℓ

𝑠−1

ℓ=𝑗

− � 𝛾ℓ

𝑡−1

ℓ=𝑖+𝑗−1

+�𝛼ℓ

𝑖−1

ℓ=𝑟

+ �𝛽ℓ

𝑗−1

ℓ=𝑠

+ � 𝛾ℓ

𝑖+𝑗−2

ℓ=𝑡

 

𝑟 + 𝑠 ≠ 𝑡 + 1  
𝑘 = 𝑖 + 𝑗 − 1 (implicit) 
No constant offset 
3 𝑛 − 1  parameters 
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Independent 

𝜂𝑖𝑖𝑘 = 𝜅 −�𝛼ℓ

𝑟−1

ℓ=𝑖

−�𝛽ℓ

𝑠−1

ℓ=𝑗

−�𝛾ℓ

𝑡−1

ℓ=𝑘

+�𝛼ℓ

𝑖−1

ℓ=𝑟

+ �𝛽ℓ

𝑗−1

ℓ=𝑠

+ �𝛾ℓ

𝑘−1

ℓ=𝑡

 

All combinations of r, s, t allowed 
k (independent index) 
Constant offset 𝜅 
1 + 3 𝑛 − 1  parameters 

 



B. Trend model (log-scale) 
ii. Parameter values as a function of reference period 

𝑟 = 4, 𝑠 = 5, 𝑡 = 5 
  
 
ℓ 1 2 3 4 5 6 7 8 9 

𝛼ℓ -4.1 -4.5 -4.5 -4.5 -4.4 -4.3 -4.3 -4.7 -4.6 

𝛽ℓ -3.5 -4.4 -4.4 -5.0 -4.8 -4.5 -4.8 -4.1 -5.9 

𝛾ℓ 4.2 4.3 4.5 4.7 4.3 4.6 4.1 4.6 4.6 
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𝑟 = 4, 𝑠 = 5, 𝑡 = 6 
  
 
ℓ 1 2 3 4 5 6 7 8 9 

𝛼ℓ -6.2 -6.6 -6.6 -6.6 -6.5 -6.5 -6.4 -6.8 -6.7 

𝛽ℓ -5.7 -6.5 -6.5 -7.2 -6.9 -6.7 -7.0 -6.2 -8.0 

𝛾ℓ 6.4 6.4 6.6 6.8 6.4 6.8 6.2 6.8 6.7 

All parameter values are shifted by ±2.139; fitted data values unchanged. 
Data: Taylor and Ashe (1983), ODP model (𝑉 𝜇 = 𝜙𝜙) fitted to full triangle 



      C. Offset invariant extrapolation 
ii. Dynamic mixing – the mechanics 

𝛾𝑘 = 𝛿𝑘 + �𝜔𝑘𝑘 ⋅ 𝛾ℓ

𝑛−1

ℓ=1

, 

where 𝑘 = 𝑛, … ,2𝑛 − 2, and ∑ 𝜔𝑘𝑘𝑛−1
ℓ=1 = 1. Ensuring that 

𝜂𝑖𝑖 = −�𝛼ℓ

𝑟−1

ℓ=𝑖

−�𝛽ℓ

𝑠−1

ℓ=𝑗

− � 𝛾ℓ

𝑡−1

ℓ=𝑖+𝑗−1

+�𝛼ℓ

𝑖−1

ℓ=𝑟

+ �𝛽ℓ

𝑗−1

ℓ=𝑠

+ � 𝛾ℓ

𝑖+𝑗−2

ℓ=𝑡

 

now also works for 𝑖 + 𝑗 > 𝑛 + 1, thus allowing us to square the triangle. 
 

7/14/2014 C2 - Actuarial Statistics I - Hartl 20 



7/14/2014 C2 - Actuarial Statistics I - Hartl 21 



Contact Information 
• thartl@bryant.edu 
• free VBA application available at request 
• P.S.: Do you have any suggestions for journal to 

publish this type of material (other than “Variance”)? 
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